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Summary 14 
The dog breed Petit Basset Griffon Vendeen has a relatively high prevalence of idiopathic epilepsy 15 

compared to other dog breeds and previous studies have suggested a genetic cause of the disease in this 16 
breed. Based on these observations, a genome wide association study was performed to identify possible 17 
epilepsy-causing loci. The study included 30 unaffected and 23 affected dogs, genotyping of 170K SNPs, 18 
and data analysis using PERL and EMMAX. Suggestive associations at CFA13, CFA24 and CFA35 were 19 
identified with markers close to three strong candidate genes. However, subsequent sequencing of exons of 20 
the three genes did not reveal sequence variations, which could explain development of the disease. This is to 21 
our knowledge the first report on loci and genes with a possible connection to idiopathic epilepsy in Petit 22 
Basset Griffon Vendeen. However, further studies are needed to conclusively identify the genetic cause of 23 
idiopathic epilepsy in this dog breed. 24 

 25 
Epilepsy is the most common neurological disorder in dogs. The prevalence in dogs in general has been 26 

estimated to around 0.76% (Heske et al. 2014). However, certain dog breeds suffer from genetic epilepsy 27 
causing a much higher prevalence (Hülsmeyer et al. 2015). Among these breeds is the Petit Basset Griffon 28 
Vendeen (PBGV), a dog breed originating from the Vendéen region in France and originally bred for rabbit 29 
hunting. An epidemiological study previously reported that the Danish population of PBGV suffer from 30 
idiopathic epilepsy with a high prevalence (8.9%) and a significant effect on litter prevalence indicating a 31 
strong genetic influence (Gulløv et al. 2011). Epilepsy in the PBGV is characterized by a relatively early 32 
onset around two years of age dominated by focal seizures alone and focal seizures evolving into generalized 33 
seizures (Gulløv et al. 2011). Unfortunately, a high number of dogs experiencing seizures (13.3%) are 34 
euthanized due to reasons related to their epileptic condition.  35 

Here we report the results of a genome wide association study (GWAS) to identify epilepsy-associated 36 
genes in PBGV. The GWAS was followed by sequencing of putative candidate genes in the most likely 37 
associated regions. 38 

 39 
This study was performed using 30 unaffected and 23 affected PBGV dogs identified in a cohort of 40 

PBGVs at the University Hospital for Companion Animals, University of Copenhagen. All samples were 41 
collected and used for research with the informed consent from the dog owners and the study procedures 42 
were approved by the local ethical and administrative committee at the Department of Veterinary Clinical 43 
Sciences, University of Copenhagen. 44 



The procedures and criteria for classification of dogs as either cases or controls are described in detail in 45 
Gulløv et al. (2011). In brief, an extensive anamnesis was obtained for all dogs based on the dog owners’ 46 
response to an elaborate questionnaire. This was followed up by telephone interviews with dog owners and 47 
finally, clinical examinations of all dogs were performed. This included physical and neurologic 48 
examinations, hematology and blood biochemistry. The diagnosis of epilepsy in the individual dog was 49 
based on detailed information collected on seizure history, seizure phenomenology and development, seizure 50 
duration, and other characteristics of the disorder following the diagnostic guidelines, which are 51 
recommended for humans and dogs with epilepsy (De Risio et al. 2015). 52 

DNA was isolated from EDTA stabilized blood samples from all dogs with a confirmed case/control 53 
status and SNP genotypes were established using the Illumina 170K SNP-chip. Genotype data was cleaned 54 
using the PLINK software (Purcell et al. 2007) with parameters --maf 0.05, --geno 0.1, --hwe 0.05, --mind 55 
0.1. After that, two GWAS analyses were performed. First, an analysis modelling an autosomal recessive 56 
inheritance pattern was performed using PLINK. One thousand permutations were performed using the --57 
mperm option to set a genome wide significance threshold. Secondly, a mixed linear model association 58 
analysis was performed using the EMMAX software (Kang et al. 2010). The later included the genetic 59 
relationship to counter effects of hidden population structures and hereby avoid possible false positive results 60 
caused by population stratification. 61 

The PLINK analysis identified one SNP (BICF2G630770657) on CFA35 position 6,342,532 (CanFam3) 62 
with a p-value of 0.03 after correction for multiple testing. This marker is located in an exon of the gene 63 
F13A1 and close to the gene NRN1 (CFA35: 6,070,379-6,078,965). The EMMAX analysis did not recognize 64 
any genome-wide significant associations. However, the markers with lowest p-values were located on 65 
CFA24 close to the DOK5 gene and on CFA13 close to the gene FAM135b (Table 1). 66 

 67 
Table 1: Summary of EMMAX analysis results 68 

Marker CFA Marker position p-value Candidate gene Gene position 
BICF2P474171 24 40,028,928 1.91E-06 DOK5 24: 40,130,265-40,282,249 
BICF2P1135812 24 39,697,242 1.00E-05 DOK5 24: 40,130,265-40,282,249 
BICF2P750280 13 33,702,258 2.06E-05 FAM135b 33,403,397-33,579,220 

Positions refer to base-pair positions in assembly CanFam3. 69 
 70 
F13A1 encodes a coagulation factor and is not of interest in relation to epilepsy. On the other hand, 71 

NRN1 as well as DOK5 are genes that are involved in neurite outgrowth and pruning. DOK5 (Docking 72 
Protein 5) encodes a cell membrane protein, which interacts with phosphorylated receptor tyrosine kinases to 73 
mediate neurite outgrowth (Shi et al. 2006). NRN1 (Neuritin 1) encodes a member of the neuritin family, 74 
which is expressed in differentiating neurons in the developing nervous system and in structures associated 75 
with plasticity in the adult brain. It promotes neurite outgrowth and branching and has a role in promoting 76 
neuritogenesis (Naeve et al. 1997). Furthermore, it has also been shown that expression of this protein has an 77 
indirect effect on neuronal excitability (Yao et al. 2016). 78 

There is an emerging realization that genes involved in normal positioning of neurons and 79 
cytoarchitectual aspects of brain development may cause epilepsy (Greenberg & Pal 2007; Cowell 2014), 80 
and it is not the first time that genes like DOK5 and NRN1 are linked to epilepsy in dogs, humans or model 81 
organisms (Table 2). Most notably, Seppälä et al. identified a mutation in the LGI2 gene causing epilepsy in 82 
the Lagotto romagnolo dog breed (Seppälä et al. 2011). Similarly, several epilepsy causing mutations have 83 
been described in LGI1 (which is very similar to LGI2) in humans, and the involvement of this gene in 84 
epilepsy has been intensely investigated in human, mouse, rat and zebra fish (Cowell 2014). LGI1 and LGI2 85 
have very important functions in neurite outgrowth and pruning just like DOK5 and NRN1. Hence, we 86 



consider those two genes potential candidate genes that might contain mutations, which could cause 87 
epilepsy.  88 

The third candidate gene, FAM135b, qualifies as a candidate gene due to its importance for neurite 89 
integrity and survival (Sheila et al. 2019) and due to its interaction with ZDHHC17 (also known as HIP14) 90 
and KAT5 (also known as TIP60) (Stelzl et al. 2005; Butland et al. 2014; Huttlin et al. 2015; Huttlin et al. 91 
2017). These genes play roles in neuronal signaling and neural growth, respectively (Huang et al. 2004; 92 
Pirooznia et al. 2012). 93 

All exons in the three candidate genes were amplified by PCR and sequenced using Sanger sequencing. 94 
The following transcript sequences were used as reference: ENSCAFT00000049974.2 (DOK5), 95 
ENSCAFT00000015082.4 (NRN1) and ENSCAFT00000001815.4 (FAM135b). Primers for PCR and 96 
sequencing are listed in Supplementary Table S1. Two cases and two controls were used for PCR and 97 
sequencing. Sequences from cases and controls were compared with reference sequences using Seqscape® 98 
Software v. 3.0 (Life Technologies, Carlsbad, CA, USA) and/or Clustal Omega (Sievers et al. 2011). No 99 
sequence variation were found in the coding parts of the three genes. Furthermore, all splice-donor and 100 
splice-acceptor sites were intact in both cases and controls. 101 

 102 
In conclusion, the present study identifies weak evidence for an association between idiopathic epilepsy 103 

in PBGV and loci on CFA13, CFA24 and CFA35. All three loci contain genes, which can be considered 104 
good candidate genes for the phenotype, namely DOK5, NRN1 and FAM135b. However, the present study 105 
rules out genetic variations in the coding parts of those genes as an explanation for the epilepsy in PBGV. 106 

Further studies should be based on a larger cohort in order to increase power of the association study. If 107 
similar collections of PBGV epilepsy cases and controls are available in other countries, a joint effort to 108 
identify the genetic causes for idiopathic epilepsy in PBGV would be of great value. Confirmation of one or 109 
more of the regions identified in the present study would prompt further analyses focused on the mentioned 110 
candidate genes and potential regulatory elements in the region(s).  111 

 112 
 113 

Table 2: Epilepsy associated genes with a known effect on neurite growth and pruning 114 
Gene Symbol Species Reference 
LGI2 Dog (Seppälä et al. 2011) 

LGI1 Human, Mouse, Rat, Zebrafish (Owuor et al. 2009; Cowell 2014; 
Silva et al. 2015) 

CTNND2 Human, Mouse (van Rootselaar et al. 2017) 
SALM3 Rat (Li et al. 2017) 
STXBP1 Rat (Yamashita et al. 2016) 
KDM5C Mouse (Wei et al. 2016) 
c-ABL Human, Rat (Chen et al. 2014) 
Ras-GRF1 Human, Rat (Zhu et al. 2013) 
CAMSAP1L1 Human (Zhang et al. 2013) 
TRPC6 Rat (Kim & Kang 2015) 
PK1 Human, Zebrafish (Mei et al. 2013) 

 115 
 116 
 117 

Supplementary Table S1: Primers for PCR and sequencing 118 
Gene Exon Forward/Reverse Primer (5'->3') 
FAM135b 

1 
F CAGTTGGGCGGTTTTGCCTA 
R GAGGAAGGGCACAAGTTAGC 

2 F TGGCCAACCCTACTATCCCT 



R TTCTCCTTCAACCAGGCTCC 

3 
F TGCAGACAGTGTTTAGGGGC 
R GTAGGTGTCCACTGACTGGC 

4 
F ACTTCACTCCTGAGCATCGC 
R GATAGAACCTGCGGCTGACA 

5 
F ACAAAGGGAGTGCTGTCCTG 
R CAGGGACATGTGGGGACTTC 

6 
F GGAGTTCACCTTGCCCCTAC 
R ACCAGCATTGGGCTAGGAAC 

7 
F GCCACAAATACCATGTCGCC 
R ACTCCCCTTAGCAAGCGACT 

8 
F CTAGTGTGGGGTCACAAGGC 
R CATCATGCTGCTAGACCCCT 

9 
F CAAAAGGCAGTGTGGTGTGG 
R AAATGCAGGCGAACCAGAGT 

10 
F TTTGCAAACTCTGGTTCGCC 
R ATGCGTTTCGAGGCTACTGC 

11 
F AGGATGGACAGACAGACGGT 
R GAGTCTGAACTGAATGCCGC 

12 

F1 ACAGTCAGGCTTTGGGATAGT 
F2 GCAAGGTGGTGCTGCTAAGT 
R1 GGCTGTATTTGAGAGATGGGC 
R2 AACCCAGGTCACTGGCATTA 
R3 GGCTGACCTTTCAGCAAGAC 

13 
F AAGCCATGGTAGCCTTGTGG 
R TCCCTAGACCTAGCACGCTG 

14 
F CCCATCTGAGGGGCTTGATG 
R TGCATGACAGGGGCTAGATG 

15 
F GGAGTCCACAGGCACATGAA 
R TCAATGCTCGTCTCACCCAG 

16 
F GGCAGGGCTGCTCTAACAAT 
R GCTTGCCCTGGCAATGATATG 

17 
F TTTCGGTTCTTCCACGCACT 
R GACCCCTGTCTCCCTGCTAT 

18 
F CTCTGAGGACGTGGGAACAC 
R AGGCCAGCGGGATCTAGAGAA 

19 
F ACACACAGGTAAGCCACATT 
R ATCTCTGTGAGCCAGGGGTA 

DOK5 
1 

F CCCGGACCTGATTCTCTCTG 
R TGGAGGTAGGTTGGAATGGG 

2 
F TGGCGTATGAATACTTTACAGGT 
R ATGTGGGGTTAGAAGGTGGG 

3-4 
F CCCTCCCTTGCTGTGTCTTA 
R TATGTGCTGGTTTCTGTGGC 

5 
F TCCCGGGATTTTAGACTAACCT 
R GATGAGGGGCCATTCGTTTC 

6 
F AATGAGAACCCAGTTGCACG 
R ACTCCGGTACTCAACGTTGT 

7 
F GCTGACACGTGCTTTCCTC 
R AGAACAGTGGCCTCAGAGAC 



8 
F GTTGCCTTCCGGACTTCTTC 
R AGCCACCAGGATGACAATGA 

NRN1 
1 

F AGTGAACCATTCCCAGCTCT 
R AACTTTGTCATTCACCCGCC 

2 
F AAACGAAGGAGGGAGTGAGG 
R TCCACTTCCTTGCTCGACTT 

3 
F GGGAGGAGATCTGAGAAGCC 
R GTTCTTTGGGGACGTTGTGA 
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